Detection, identification, and quantification of sensor fault

نویسنده

  • J. Kullaa
چکیده

In structural health monitoring (SHM) and control, the structure can be instrumented with a redundant sensor network, which can be utilized in sensor fault diagnosis. In this study, the objective is to detect, identify, and quantify a sensor fault using the structural response data from the sensor network. Seven different sensor fault types are investigated and modelled: bias, gain, drifting, precision degradation, complete failure, noise, and constant with noise. Each sensor in the network is modelled using the minimum mean square error (MMSE) estimation and the sensor fault is identified and quantified using the multiple hypothesis test utilizing the generalized likelihood ratio (GLR). The proposed approach is experimentally verified with a sensor network assembled on a wooden bridge. Different sensor faults are simulated by modifying a single sensor. The method is able to detect a sensor fault, identify and correct the faulty sensor, as well as identify and quantify the fault type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UAV attitude Sensor Fault Detection Based On Fuzzy Logic and by Neural Network Model Identification

Fault detection has always been important in aviation systems to prevent many accidents. This process is possible in different ways. In this paper, we first identify the longitudinal axis plane model using neural network approach. Then based on the obtained model and using fuzzy logic, the aircraft status sensor fault detection unit was designed. The simulation results show that the fault detec...

متن کامل

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

An Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems

Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...

متن کامل

FDMG: Fault detection method by using genetic algorithm in clustered wireless sensor networks

Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when und...

متن کامل

Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems

In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...

متن کامل

Sensor Fault Detection for a class of Uncertain Nonlinear Systems Using ‎Sliding Mode Observers

This paper deals with the issues of sensor fault detection for a class of Lipschitz uncertain nonlinear system. By definition coordinate transformation matrix for system states and output system, at first the original system divided into two subsystems. the first subsystem includes uncertainties but without any sensor faults and the second subsystem has sensor faults but is free of uncertaintie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010